VI Instrument Drivers
Programming Guide
Excel VBA Edition

April 2012 Revision 2.2

Product names and company names that appear in this guide are the trademarks or registered
trademarks of their respective companies.

© 2019 Kikusui Electronics Corp.

Contents

Contents

T 1 geTo VT3 1 o] o PP PPPPPPTPPRP 3
Instrument drivers used with Excel VBA. ... 3

10 o] o o] (= To I g1 (=1 o 7= Tt 3
Software you need to install before programming ... 4
Preparation for USING VBA ...t e e e e e e e e e as 5
Enabling MacroS iN EXCElooo e 5
Creating @ NEW MACTOoooeiiiiieeee et e e e e e e e e e e e e e e e e e s e e s e e e e eaaeaees 7
Programming using a specific INterface ... 8
Preparation for programming..........cooo e 8
IMporting @ TYPe LIiDrary ... 8

BUIldING @ PrOgram 8
Creating an object and opening/closing @ SESSION..........uuiiiiiiiiiiiiiiiiieeee s 9

Setting channels and testing conditions..............ccccuiiiiiiiiiiii s 11

[P T aTo [T Te =T g =T 4 o PP 13

EXECULING @ PrOGram ... ot e e e e e et e e e e aanaas 14
Programming Using @ Class INterface ... 15
Preparation for programming...........oooo e 15
Creating virtual INSIrUMENtSooooiiiiii s 15

Importing @ Type Library ... 21

BUIIdING @ PrOGIramt e e e e e e e e e e 22
Creating an object and opening/closing @ SESSION..........uuiiiiiiiiiiiiiiiiieeeeeees 22

Setting channels and testing conditions...........cccccooeiiiiiiiiiiii e 25

HaNAIING @N ©ITON ... 26

EXECULING @ PrOGraimuueiieiieeiieieiee ettt 27
Replacing INSITUMENTSoeeiiii e 28

2 KIKUSUI Electronics Corp.

Introduction

Introduction

This guide shows examples of using the KikusuiPwr VI Instrument Driver (for the Kikusui
PWR-01 series DC power supply). You can use other VI instrument drivers of different
manufacturers or models by following almost the same instructions as those described

here.

This guide uses Microsoft Excel for Microsoft 365 MSO (16.0.13801.20288) 64-bit Ver. 2102
to show the examples of creating 64-bit programs that run on 64-bit Windows 10.

Instrument drivers used with Excel VBA

Excel VBA provides one of the development environments suitable for use with 1VI-COM
instrument drivers. Although using COM objects, such as ActiveX controls, is a generally
adopted technique in Excel VBA programming, you can create programs using IVI-COM
instrument drivers in almost the same instructions as those when creating them using COM

objects.
The guide shows examples of how to create programs using I1VI-COM instrument drivers.

Supported interfaces

IVI instrument drivers support the following two types of interfaces:

* Specific interface
Interface specific to an individual driver. With the interfaces of this type, you can make the
most of the functions of the instruments you will use.

* Class interface
Interface that supports an instrument class defined by the VI specifications.
The interfaces of this type enable interchangeability; however, the use of instrument-spe-
cific functions is limited.

This guide explains how to create programs using these interfaces.

Memo

* Information about the instrument classes to which individual instrument drivers belong
are contained in the Readme file (Readme.txt) for the driver.
To view the Readme file, click Start > Kikusui > KikusuiPwr IVI Driver 1.0.0

Documentation.

« If the instrument driver does not belong to any instrument class, you cannot use the
class interface to create applications that use interchangeability.

IVI Instrument Drivers Programming Guide — For Excel VBA 3

Introduction

Software you need to install before programming

Before programming, download and install the following software from the Download
Service on our website (https://www.kikusui.co.jp/download/).

* KI-VISA Ver5.5 or later
* PWR-01 series IVI-COM Multi-Environment Drivers Ver1.0 or later

For details, see “IVI Instrument Drivers Programming Guide — Setup”.

If you wish to use a class interface, you also need to install the following software:

* NI-MAX Ver20.5.0 or later
* IVl compliance Package Ver20.0.0 or later

4 KIKUSUI Electronics Corp.

Preparation for Using VBA

Preparation for Using VBA

The following shows an example of creating an application for directly adding a button in an
Excel sheet. To create such an application, you need to enable macros in Excel to create a

new macro.

Enabling macros in Excel

To use VBA, enable macros in Excel.

1 Launch Excel, and then click the File tab.

2 Click Options at the lower left of the window.

3 Select Customize Ribbon > Developer.

Excel Options

General
Formulas

Data

Proofing

Save
Language
Ease of Access

Advanced

Customize Ribbon I

Quick Access Toolbar
Add-ins

Trust Center

E“E.] Customize the Ribbon.

Choose commands from: G

Popular Cormmands

Add or Remove Filters
All Chart Types...
f+ Borders
Calculate Now
Center
Conditional Formatting
Copy
1] Customn Sort...
Cut
Decrease Font Size
Delete Cells...
Delete Sheet Columns
%X Delete Sheet Rows
Email
& Fill Color
Font
A Font Color
Font Size
Format Cells
< Format Painter
ﬁ:ﬂ Freeze Panes
A’ Increase Font Size
ﬁ Insert Cells...
ﬁ\: Insert Function...
FO Insert Picture
Llﬁ Insert Sheet Columns
=% |nsert Sheet Rows
E Insert Table
Macros
2| Merge & Center

=<

[> <[l =

v

3

E~ET~

Customize the Ribbon: &

Main Tabs

Main Tabs

Background Removal

Bl ¥ Home
Clipboard
Font
Alignment
MNumber
Styles
Cells
Editing
Ideas
Sensitivity

B Insert

[Draw

Page Layout

[l Formulas

[Data

Review

[~ Help

I

| Mew Tab | | New Group | | Rename... |

Customizations: i
Import/Export |

OK | | Cancel

You will see the Developer tab in your Excel ribbon.

IVI Instrument Drivers Programming Guide — For Excel VBA 5

Preparation for Using VBA

4 Click the Developer tab in the Excel ribbon.

AutoSave (@ of) < Book] - Excel O Search -
File Home Insert Page Layout Formulas Data Review View Developer Help

{2 F=| E&Record Macro /J {C}} E| @ [] Properties B [Import
2 & 5 B | =

o o
Use Relative Ref View Cod) Bxpansion Packs [£1
Yioual Macras 08 Use Relative References | 20 o nn | [ElviewCode | ¢ e =
Basic A\ Macro Security ins Add-ins Add-ins = [l Run Dialog =
Code Add-ins Controls XML
Al - ke
A B C D E F G H | 1 K L M

5 In the Code group, click Macro Security.
The Trust Center dialog box appears.

6 Select Macro Settings > Enable all macros.

Trust Center ? X

Trusted Publishers
fusted Fublisher Macro Settings

Trusted Locations

Disable all macros without notification
Trusted Documents

Disable all macros with notification

Trusted Add-in Catalogs

Add-ins ® ‘Enable all macros (net recommended; potentially dangerous code can run); I

ActiveX Settings Developer Macro Settings

Macro Settings
Trust access to the YBA project object model
Protected View
Message Bar
External Content

File Block Settings

Privacy Options

7 Click OK.

6 KIKUSUI Electronics Corp.

Preparation for Using VBA

Creating a new macro

Create a button in Excel and register a new macro.

1 On the Developer tab, click Insert > Form Controls, and then select a
Button (in Form Controls).

2 Click the cell in which you want to add the button.
The Record Macro dialog box appears.

3 Enter a name for the macro, and then click Create.

Assign Macro ? x

facro name:

Button1_Click| Mew
Becord...

Macros in: | All Open Workbooks =

Description

The Visual Basic editor appears. The editor shows the source code for the button han-
dler. From here, you can write a program in the button handler.

IVI Instrument Drivers Programming Guide — For Excel VBA 7

Programming using a specific interface

Programming using a specific interface

With the specific interface, you can make the most of the instrument driver-specific
functions.

The following explains how to create a program using a specific interface.

Memo

Specific interfaces do not support interchangeability. If you which to take advantage of
interchangeability, use a class interface (p.7).

Preparation for programming

Importing a Type Library

Import a type library for the IVI-COM instrument driver you will use.

1 Open the Visual Basic editor, and then click Tools > References.
The References dialog box appears.

2 Select IVI KikusuiPwr 1.0 Type Library and IviDriver 1.0 Type Library.

References - VBAProject >
Available References:
Ivi Configuration Server 1.6 Type Library {x&4) A Cancel

| VI KikusuiPwr 1.0 Type Library
IviACPwr 1.0 Type Library (x64)
IviCounter 1.0 Type Library (x64) Browse...
IviDCPwr 2.0 Type Library (x64)
IviDigitizer 1.0 Type Library (x64) ﬂ
IviDmm 3.0 Type Library (x&4)
IviDownconverter 1.0 Type Library (x64) Priarity

| TviDriver 1.0 Type Library (x64) Help
TviEventServerDLL 1.0 Type Library ﬂ
IviFgen 5.2 Type Library (x64)
IviLxiSync 1.0 Type Library (x64)
IviPwrMeter 1.0 Type Library (x64)
TwiRFSinGen 1.1 Tvne | ikrary (w641

IntelCpHediSvclib

Location: C:\Windows'\SysWows\IntelCpHedSve.exe
Language: Standard

3 Click OK.

8 KIKUSUI Electronics Corp.

Programming using a specific interface

Building a program

Creating an object and opening/closing a session

The following is a programming code example, which contains the code for creating an
instrument driver object and opening and closing the session in addition to the button han-
dler source code you opened in “Creating a new macro” (p.7). Here, it is assumed that

the instrument (Kikusui PWR-01 series DC power supply) with IP address of 192.168.1.5 is
connected via LAN.

4 N
Sub CommandButtonl Click()
Dim inst As IKikusuiPwrOl
Set inst = New KikusuiPwr0l
inst.Initialize "TCPIP::192.168.1.5::INSTR", True, True, ""
inst.Close
End Sub
. J

The above code can run as an independent program. To execute the program for validation,
see “Executing a program” (p.14).

Parameters for Initialize method

All IVI-COM instrument drivers include the Initialize method defined by the VI specifica-
tions. The Initialize method has the following parameters:

Parameters Type Description

ResourceName | String Character string of the VISA resource name determined
by the I/O interface or address to which the instrument
is connected. For example, when an instrument with an
IP address of 192.168.1.5 is connected to a LAN and
controlled by a VXI-11 interface, the parameter will be
[TCPIP::192.168.1.5::INSTR].

ldQuery Boolean If TRUE, this method issues a query command, such
as the *IDN? query, to ask the instrument model
information.

Reset Boolean If TRUE, this method issues a restore command, such

as the *RST command, to reset the instrument settings.

OptionString String Allows you to change the settings of the IVI definition.

IVI Instrument Drivers Programming Guide — For Excel VBA 9

Programming using a specific interface

How to set OptionString

OptionString of the initialize method can specify the following VI definitions:

VI definition Default value
RangeCheck TRUE

Cache TRUE
Simulate FALSE
QuerylnstrStatus FALSE
RecordCoercions FALSE

Interchange Check FALSE

OptionString is character string parameters. The following shows an example.

[QuerylnstrStatus = TRUE , Cache = TRUE , DriverSetup=12345]

When formatting, be sure to note the following:
« If the set value is not specified, the default value will be applied.

* The set values are Boolean datatype. You can select a set value from the following:
[TRUE], [FALSE], [1], [0].

* Function names and set values are case-insensitive. Uppercase and lowercase letters are
not distinguished.

* When you set multiple items, use commas to separate them.

* Depending on the instrument driver, a “DriverSetup” parameters are supported.
The “DriverSetup” parameters are used to specify an item not defined by the IVI specifi-
cations when the Initialize method is invoked. Its usage and format depend on the driver.
Therefore, when you set a “DriverSetup” parameter, specify it as an item at the end of the
"OptionString”. For details about the “DriverSetup” parameters, see the Readme file or the
online help for the driver.

10 KIKUSUI Electronics Corp.

Programming using a specific interface

Setting channels and testing conditions

IVI instrument drivers for power supplies are designed based on the premise that the VI
instrument drivers have multiple channels. Therefore, in many cases, properties or methods
that control instrument panel settings implement the concept of an array of objects called
Repeated Capabilities (or Collection in general computing terms for COM) in the VI spec-
ifications. For example, instrument drivers for DC power supplies implement the Output
Collection.

The KikusuiPwr IVI-COM driver implements IKikusuiPwr01Outputs and
IKikusuiPwr01Output. A collection is a group of multiple objects. Therefore, a collection
contains more than one object. Typically, objects and their collection have the same name.
The plural object name represents a collection, while a singular object name represents an
object.

The following shows a programming code example, which includes the code for controlling
the output channel, “OutputChannel1”, of the Kikusui PWR-01 series DC supply in addition
to the code mentioned in “Building a program” (p.9).

4 2\
Sub CommandButtonl Click()

Dim inst As IKikusuiPwr0Ol

Set inst = New KikusuiPwr01l
inst.Initialize "TCPIP::192.168.1.5::INSTR", True, True, ""

Dim output As IKikusuiPwr0lOutput

Set output = inst.Outputs.Item("OutputChannell")
output.VoltageLevel = 20.0

output.CurrentLimit = 2.0

output.Enabled = True

inst.Close

End Sub
. J

Explanation of the programming code example

In the above code, IKikusuiPwr01Outputs is obtained through the Outputs property for the
IKikusuiPwr01 interface. Also, the IKikuauiPwr01Output interface is obtained using the Item

property.
The VoltagelLevel property specifies a voltage level. The CurrentLimit property specifies a
limit value for the current. The Enabled property sets the ON/OFF state of the output.

A single Output object name ("OutputChannel1" in the example code) to be referenced is
specified for the parameter to be passed to the Item property. The object name varies by
instrument driver. You can usually find the list of object names available for a specific instru-
ment driver in the driver’s Help file. Alternatively, you can check an object name by writing
the code mentioned below.

IVI Instrument Drivers Programming Guide — For Excel VBA 11

Programming using a specific interface

Checking an object name specific to an instrument driver

If you are uncertain about the object name specific to the instrument you will use, you can
check it using Count or Name (both are read-only) in the Output collection.

The following shows a programming code example.

4 A
Dim outputs As IKikusuiPwrOlOutputs

Set outputs = inst.outputs

Dim n As Integer

Dim c¢ As Integer

C outputs.Count

For n = 1 To ¢
Dim name As String
name = outputs.name (n)
Debug.Print name

Next
g J

The Count property returns the number of single objects containing in the collection. The
Name property returns the name of a single object that matches the given index number.

The name returned by the Name property is the parameter to be passed to the Item prop-
erty mentioned in “Setting channels and testing conditions” (p.11).

The above example repeatedly execute the steps from index 1 to Count using the For...Next
statement. Note that the index parameter to be passed to the Name parameter is not zero-
based but 1-based.

12 KIKUSUI Electronics Corp.

Programming using a specific interface

Handling an error

If you attempt to pass an invalid value, such as a value outside the range, to the property or
call an unsupported function, an error occurs in the instrument driver. The IVI-COM instru-
ment driver transmits an error to the client program as a COM exception each time it occurs
in the instrument driver. VBA handles COM exceptions using the On Error Goto statement.

The following shows a programming code example, which includes the code for handling an
error in addition to the one mentioned in “Setting channels and testing conditions” (p.11).

4 N
Sub CommandButtonl Click()

On Error GoTo DRIVER ERR:
Dim inst As IKikusuiPwrOl
Set inst = New KikusuiPwr0OlLib.KikusuiPwr0Ol

inst.Initialize "TCPIP::192.168.1.5::INSTR", True, True, ""

Dim output As IKikusuiPwr0lOutput

Set output = inst.Outputs.Item("OutputChannell")
output.VoltageLevel = 20.0

output.CurrentLimit = 2.0

output.Enabled = True

inst.Close

Exit Sub
DRIVER ERR:
Debug.Print Err.Description

End Sub
g J

Explanation of the programming code example

This code handles an error using the On Error Goto statement. For example, if a name
passed to the ltem property is wrong, a value specified to VoltageLevel is outside the
range, or communication with the instrument fails, a COM exception occurs in the instru-
ment driver. The above code displays a simple message in the immediate window when an
exception occurs.

IVI Instrument Drivers Programming Guide — For Excel VBA 13

Programming using a specific interface

Executing a program

Execute the program you have created.

1 Click the button you have added in the Excel worksheet in Visual Basic.

The VBA macro starts, and then the program ends.

When the program fails to run

A COM exception (VBA runtime error) occurs.(p.13)

Microsoft Visual Basic

Run-time error '-2147204538 (30044214)":

KikusuiPwrd 1: IO error: HRESIULT = 80040011,
Failed to open VISA resource.

Continue End Help

14 KIKUSUI Electronics Corp.

Programming Using a Class Interface

Programming Using a Class Interface

The following explains how to create a program using a class interface. With class inter-
faces, you can implement interchangeability that uses an instrument class interface by
programming using an instrument class interface defined by the 1VI specifications. Using
interchangeability, you can replace the instruments without recompiling and re-linking the
application.

Memo

* To use interchangeability, the IVI-COM instrument drivers must be provided for both
instruments before and after the replacement and belong to the same instrument
class. Interchangeability between different instrument classes is not supported.

* In programming using a class interface, the available instrument-specific functions
are limited. To make the most of the functions specific to an instrument, use a specific
interface (p.8) to create programs.

Preparation for programming

Creating virtual instruments

Before creating an application that uses interchangeability, you need to create a virtual
instrument.

Memo

To avoid losing interchangeability, the application code cannot include statements
dependent on specific [VI-COM instrument drivers (e.g. a directly created KikusuiPwr
object) or specific VISA addresses (resource names) (e.g. [TCPIP::192.168.1.5::
INSTR]).

The VI specifications enable interchangeability by providing an VI Configuration Store out-
side the instrument drivers and applications.

The applications control instruments through a special instrument driver called instrument
class driver instead of directly control them using instrument-specific drivers.

The application controls the instrument by selecting the instrument driver DLL according to
the data stored in the 1Vl Configuration Store and indirectly accessing the loaded instrument
driver through a class driver function that does not depend on the instrument.

The IVI Configuration Store stores data as an XML file (e.g. C:/ProgramData/IVI
Foundation/IVI/IviConfigurationStore.xml). Mainly IVI instrument drivers or some of
the VISA/IVI configuration tools access the IVI Configuration Store through the VI
Configuration Server DLLs. Applications do not usually use it.

IVI Instrument Drivers Programming Guide — For Excel VBA 15

Programming Using a Class Interface

When using VBA, use the software NI-MAX (NIMeasurement and Automation Explorer)
provided by National Instruments to configure the VI driver.

The following explains how to create a virtual instrument using NI-MAX.

Creating Driver Sessions

1 Launch NI-MAX, and then check the hierarchy under the IVI Drivers in the
tree view on the left of the screen.

2 Right-click Driver Sessions and select Create New (case-sensitive).

3 Specify a name for Driver Sessions.
In this example, mySupply is specified.

Fea mySupply - Measurement & Automation Explorer

File Edit View Toels Help
v B My System k Save VI Configuration (5 ¢ Show Help
&8 Devices and Interfaces
53 Software @ 3 |
~ [VI Drivers — Mysupply
E Legical Names
v [aikaassian
gl mySupply Initialization Options
Sy - [Cache [Interchange Check.
B3 Remote Systems
Fange Check] Query Instrument Status
[[] Record Coercions
Simulate With
Dor't Simulate ~ GoTo
Diriver Setup
Description
General @ Hardware ﬁ Software o3 Virtual Names 5[? Initial Settings

The Driver Sessions have now been created.

16 KIKUSUI Electronics Corp.

Programming Using a Class Interface

Creating a Hardware Asset

Hardware Asset allows you to specify the path to connect the instrument you will use.

1 Select the Hardware tab.

@ Gener3 s Software o8 Virtual Names §|@ Initial Settings

2 Click Add to create a new Hardware Asset.

3 Specify a name for Hardware Asset.
In this example, mySupply is specified.

4 In Resource Descriptor, specify the VISA address to which the instrument
is connected.

In this example, [TCPIP::192.168.1.5::inst0::INSTR] is specified.

X mySupply - Measurement & Automation Explorer

File Edit View Tools Help

v B My System I Save IVI Configuration (5 Revert ¢ Show Help
& Devices and Interfaces
&1 Software @
~ [l VI Drivers mySuppIy
lmd Logical Names
~ (g8 Driver Sessions
gl mySupply Hardware Aszets
(3 Advanced Mame Resouce Descriptor Drescription
E3 Remote Systems
TS upply TCPIP:192168.1. buinst0:INS TR

Add Remove

< >
General @ Hardware ﬁ Software g Virtual Names 5[@ Initial Settings

Hardware Asset has now been created.

IVI Instrument Drivers Programming Guide — For Excel VBA 17

Programming Using a Class Interface

Setting Software Module

Software Module allows you to specify an instrument driver module (DLL module).

1 Select the Software tab.

KL L) v

Genera\ @ Hardware| L5 Virtual Names §[§ Initial Settings

2 From the Software Module list, select the instrument driver module to be
used.

In this example, kipwr is selected.

#" mySupply - Measurement & Automation Explorer

File Edit View Tools Help

~ Bl My System H Save VI Configuration ﬁ Revert <7 Show Help
&5 Devices and Interfaces "
& Software @
~ [ff] VI Drivers mySuppIy

I Logical Names
~ [gal Driver Sessions

gJ mySupply Software Module
(23 Advanced > ol

Kipwr
E3 Remote Systems
Prefix Prog IDY
keipwar FikusuiPwr 0l KilusuiPuwr0l

Assembly Qualified Class Mame

todule Path (32-bit]
kipwr.dl

Module Path (64-bit]

kipwr_B4.dll

Published APl Supported Instrument Models

IwiDCPwr 3.0 PwRAa0TL A

IviDCPwr 3.0 Pw/RA0TML

IwiDriver 2.1 PR 40TMH

IwiDriver 2.1 PwR40TH
F/RE0TL
Fi/RE0TML v
oD OnThin

GenEraI @ Hardware ﬁ Software o8 Virtual Mames 5[? Initial Settings

Software Module has now been specified.

18 KIKUSUI Electronics Corp.

Programming Using a Class Interface

Creating a Virtual Name

Virtual Name allows you to create a virtualized channel name for the instrument driver. This
is because the valid channel name varies by instrument driver when you use an instrument
driver to which channel name needs to be specified.

1 Select the Virtual Names tab.

@General @ Hardware ﬁ Softwarel B Virtual Names I? Initial Settings

2 Click Add to add a virtual name, and then enter Track_A in Virtual Name.
In the Physical Name list, you will see the channel the instrument will use.

3 In the Physical Name column, select a channel name displayed on the list
or enter a valid channel name.

In this example, OutputChannel1 is selected.

Memo

In some cases, the list may not display all channel names, depending on the driv-
er's mounting conditions or the configuration of the multi-channel power supply. For
details about the available driver channel names, see the Readme file or the online
help for the driver.

¢ mySupply - Measurement & Automation Explorer

File Edit View Tools Help

~ B3 My System I Save IVl Configuration (] Revert ¢ Show Help
B! Devices and Interfaces
&1 Software @
~ [VI Drivers [mySupp\y

I Logical Names

~ gl Driver Sessions
@ mySupply Wirtual Name Mappings

(3 Advanced

Wirtual Mame Physical Mame
E3 Remote Systems

Track_& OutputChannel

Add Remove

& General [Hardware ¢ Software 3 Virtual Names S8 Initial Settings

Virtual Name has now been created.

IVI Instrument Drivers Programming Guide — For Excel VBA 19

Programming Using a Class Interface

Setting a Logical Name

A Logical Name refers to the name of a virtual instrument configured in NI-MAX.

1 Check the hierarchy under IVI Drivers in the tree view on the left side of
the screen.

2 Right-click Logical Name, and then select Create New (case-sensitive).

3 Specify a name for Logical Name.

In this example, mySupply is specified.
4 In Driver Session, select mySupply.

5 Click Save IVI Configuration on the toolbar to save the settings.

¢ mySupply - Measurement & Automation Explorer

File Edit View Tools Help
v B3 My System I IH Save VI Configuration ﬁ < Show Help
& Devices and Interfaces
&1 Software
~ [W Drivers Ol mySupply
~ I Logical Names
I mySupply
~ [gal Driver Sessions Driver Session
& mySupply] v GoT
23 Advanced waLpRY el
E3 Remote Systems

Drescription

General

Logical Name has now been set.
Now, you have completed the creation of the virtual instrument.

20 KIKUSUI Electronics Corp.

Programming Using a Class Interface

Importing a Type Library

Import a type library for the IVI-COM instrument driver you will use.

1 Open the Visual Basic editor, and then click Tools > References.
The References dialog box appears.

2 Select IviDCPwr 2.0 TypeLibrary, lviDriver 1.0 Type Library and
IviSessionFactory 1.1 Type Library.

References - VBAProject Pt
Available References:
IviCounter 1.0 Type Library (x64) Cancel

v| IviDCPwr 2.0 Type Library (x64)
IviDigitizer 1.0 Type Library (x54)
IviDmm 3.0 Type Library (x&4) Browse...
IviDownconverter 1.0 Type Library (x&64)

| TviDriver 1.0 Type Library {(x64) ﬂ
IviEventServerDLL 1.0 Type Library

IviFgen 5.2 Type Library (x64) Priority
IviLxiSync 1.0 Type Library (x64) Help
IviPwrMeter 1.0 Type Library (x64) +

IviRFSigzen 1.1 Type Library {x64)
IviScope 3.0 Type Library (x64)

TwisnecAn 1.0 Tvne |ibrary (xad)

IviSessionFactory 1.1 Type Library (x&64)

Location: C:\Program Files\IVI Foundation\IVI'\Bin\IviSessionFactory.dll
Language: Standard

3 Click OK.

IVI Instrument Drivers Programming Guide — For Excel VBA 21

Programming Using a Class Interface

Building a program

Creating an object and opening/closing a session

An example of a programing code for creating an instrument driver object and opening
and closing a session is shown below. To complete the programming, add the program-
ming code below in the button handler source code you opened in “Creating a new macro”

(p.7).

-
Sub CommandButtonl Click()

~

Dim sf As IIviSessionFactory

Set sf = New IviSessionFactory

Dim inst As IIviDCPwr
Set inst = sf.CreateDriver ("mySupply")

inst.Initialize "mySupply", True, True, ""

inst.Close

End Sub
\ J

Explanation of the programming code example

For class interfaces, you cannot use any code that depends on a specific instrument.
Therefore, this source code does not use the name, Kikusui. This code creates an
IviSessionFactory object and obtains the reference to the llviSessionFactory interface.

Next, it specifies the VI logical name (virtual instrument), mySupply, created in “Setting a
Logical Name” (p.20), and then calls the CreateDriver method.

Finally, it calls the Initialize method to pass the VI logical name, and then closes the ses-
sion. When the VI logical name is passed, the VISA address specified in “Creating a
Hardware Asset” (p.17) is used to execute the program. At this point, communication with
the instrument begins.

The above code can run as an independent program. To execute the program for validation,
see “Executing a program” (p.27).

22 KIKUSUI Electronics Corp.

Programming Using a Class Interface

Parameters for Initialize method

All IVI-COM instrument drivers include the Initialize method defined by the 1VI specifica-
tions. The Initialize method has the following parameters:

Parameters Type Description

ResourceName | String Character string to identify an instrument. Class inter-
faces use an VI logical name to identify it.

[dQuery Boolean If TRUE, this method issues a query command, such
as the *IDN? query, to ask the instrument model
information.

Reset Boolean If TRUE, this method issues a restore command, such

as the *RST command, to reset the instrument settings.

OptionString String Allows you to change the settings of the VI definition.

IVI Instrument Drivers Programming Guide — For Excel VBA 23

Programming Using a Class Interface

How to set OptionString

OptionString allows you to set the following VI definitions:

VI definition Default value
RangeCheck TRUE

Cache TRUE
Simulate FALSE
QuerylnstrStatus FALSE
RecordCoercions FALSE

Interchange Check FALSE

OptionString is character string parameters. The following shows an example.

[QuerylnstrStatus = TRUE , Cache = TRUE , DriverSetup=12345]

When formatting, be sure to note the following:
« If the set value is not specified, the default value will be applied.

* The set values are Boolean datatype. You can select a set value from the following:
[TRUE], [FALSE], [1], [0].

* Function names and set values are case-insensitive. Uppercase and lowercase letters are
not distinguished.

* When you set multiple items, use commas to separate them.

* Depending on the instrument driver, a “DriverSetup” parameters are supported.
The “DriverSetup” parameters are used to specify an item not defined by the IVI specifi-
cations when the Initialize method is invoked. Its usage and format depend on the driver.
Therefore, when you set a “DriverSetup” parameter, specify it as an item at the end of the
"OptionString”. For details about the “DriverSetup” parameters, see the Readme file or the
online help for the driver.

24 KIKUSUI Electronics Corp.

Programming Using a Class Interface

Setting channels and testing conditions

IVI instrument drivers for power supplies are designed based on the premise that the VI
instrument drivers have multiple channels. Therefore, in many cases, properties or methods
that control instrument panel settings implement the concept of an array of objects called
Repeated Capabilities (or Collection in general computing terms for COM) in the VI spec-
ifications. For example, instrument drivers for DC power supplies implement the Output
Collection.

For class interfaces, lviDCPwrOutput is used. The following shows a programming code
example, which includes the code for controlling the instrument's output channel in addition
to the one mentioned in “Building a program” (p.22).

4 N
Sub CommandButtonl Click()

Dim sf As IIviSessionFactory

Set sf = New IviSessionFactory

Dim inst As IIviDCPwr
Set inst = sf.CreateDriver ("mySupply")

inst.Initialize "mySupply", True, True,

Dim output As IIviDCPwrOutput
Set output = inst.outputs.Item("Track A")

output.VoltagelLevel = 20.0
output.CurrentLimit = 2.0
output.Enabled = True
inst.Close

End Sub
. J

Explanation of the programming code example

The above code obtains IlviDCPwrOutputs through the Outputs property of the IviDCPwr
interface. The ltem property passes the virtual name, Track A, created in “Creating a Virtual
Name” (p.19). When the virtual name is passed, the channel name specified by Physical
Name is used to execute the program.

The VoltagelLevel property specifies a voltage level. The CurrentLimit property specifies a
limit value for the current. The Enabled property sets the ON/OFF state of the output.

IVI Instrument Drivers Programming Guide — For Excel VBA 25

Programming Using a Class Interface

Handling an error

If you attempt to pass an invalid value, such as a value outside the range, to the property or
call an unsupported function, an error occurs in the instrument driver. The IVI-COM instru-
ment driver transmits an error to the client program as a COM exception each time it occurs
in the instrument driver. VBA handles COM exceptions using the On Error Goto statement.

The following shows a programming code example, which includes the code for handling an
error in addition to the one mentioned in “Setting channels and testing conditions” (p.25).

4 , R
Sub CommandButtonl Click()

On Error GoTo DRIVER ERR:

Dim sf As IIviSessionFactory

Set sf = New IviSessionFactory

Dim inst As IIviDCPwr
Set inst = sf.CreateDriver ("mySupply")

inst.Initialize "mySupply", True, True, ""

Dim output As IIviDCPwrOutput
Set output = inst.outputs.Item("Track A")

output.VoltageLevel = 20.0
2.0

output.CurrentlLimit

output.Enabled = True
inst.Close

Exit Sub
DRIVER_ERR:

Debug.Print Err.Description

End Sub
g J

Explanation of the programming code example

This code handles an error using the On Error Goto statement. For example, if a name
passed to the ltem property is wrong, a value specified to VoltagelLevel is outside the
range, or communication with the instrument fails, a COM exception occurs in the instru-
ment driver. The above code displays a simple message in the immediate window when an
exception occurs.

26 KIKUSUI Electronics Corp.

Programming Using a Class Interface

Executing a program

Execute the program you have created.

1 Click the button you have added in the Excel worksheet in Visual Basic.
The VBA macro starts, and then the program ends.

When the program fails to run

A COM exception (VBA runtime error) occurs.(p.26)

Microsoft Visual Basic

Run-time error '-2147204538 (80044214)":

KikusuiPwr1: IfO error: HRESULT = 80040011.
Failed to open VISA resource.

Continue End Help

IVI Instrument Drivers Programming Guide — For Excel VBA 27

Programming Using a Class Interface

Replacing instruments

You can continue operating the system by changing only the Driver Session (IVI
Configuration) settings for the instrument driver even after replacing the instruments. There
is no need to modify the application.

You need to change the Driver Session settings for the following three items:

Item Description

Hardware tab > Hardware Assets > VISA address to which the instrument is

Resource Descriptor connected.

Software tab > Software Module Instrument driver to be used.

Virtual Names tab > Physical Names Physical name to which the virtual chan-
nel name is mapped.

The application can run without being recompiled and re-linked if the settings are properly
configured for the new instrument after replacement.

In the examples in this guide, when the instrument is replaced from the Kikusui PWR-01
series DC power supply (an instrument hosted by the kipwr instrument driver) to the Agilent
N5700 Series DC power supply (an instrument hosted by the AgN57xx driver), the mySup-
ply settings needs to be changed as follows:

Item Description

Hardware tab > Hardware Assets > VISA address to which the Kikusui

Resource Descriptor PWR-01 series DC power supply is
connected.

=> VISA address to which the Agilent
N5700 Series DC power supply is

connected.
Software tab > Software Module “Kipwr” => “AgN57xx”
Virtual Names tab > Physical Names “OutputChannel1” => “Output1”

Memo

Interchangeability using an IVI class driver does not guarantee the operation before and
after the replacement of instruments. After replacing any of the instruments, be sure to
fully verify that the system operates properly.

28 KIKUSUI Electronics Corp.

	Introduction
	Instrument drivers used with Excel VBA
	Supported interfaces
	Software you need to install before programming

	Preparation for Using VBA
	Enabling macros in Excel
	Creating a new macro

	Programming using a specific interface
	Preparation for programming
	Importing a Type Library

	Building a program
	Creating an object and opening/closing a session
	Setting channels and testing conditions
	Handling an error

	Executing a program

	Programming Using a Class Interface
	Preparation for programming
	Creating virtual instruments
	Importing a Type Library

	Building a program
	Creating an object and opening/closing a session
	Setting channels and testing conditions
	Handling an error

	Executing a program
	Replacing instruments

