
﻿

IVI Instrument Drivers
Programming Guide
Excel VBA Edition
April 2012 Revision 2.2

Product names and company names that appear in this guide are the trademarks or registered
trademarks of their respective companies.
© 2019 Kikusui Electronics Corp.

KIKUSUI Electronics Corp.2

Contents

Contents

Introduction... 3

Instrument drivers used with Excel VBA... 3

Supported interfaces.. 3

Software you need to install before programming.. 4

Preparation for Using VBA.. 5

Enabling macros in Excel... 5

Creating a new macro.. 7

Programming using a specific interface.. 8

Preparation for programming... 8

Importing a Type Library.. 8

Building a program... 8

Creating an object and opening/closing a session... 9

Setting channels and testing conditions..11

Handling an error... 13

Executing a program.. 14

Programming Using a Class Interface.. 15

Preparation for programming... 15

Creating virtual instruments... 15

Importing a Type Library.. 21

Building a program... 22

Creating an object and opening/closing a session... 22

Setting channels and testing conditions... 25

Handling an error... 26

Executing a program.. 27

Replacing instruments.. 28

Introduction

IVI Instrument Drivers Programming Guide ― For Excel VBA 3

Introduction

Introduction
This guide shows examples of using the KikusuiPwr IVI Instrument Driver (for the Kikusui
PWR-01 series DC power supply). You can use other IVI instrument drivers of different
manufacturers or models by following almost the same instructions as those described
here.
This guide uses Microsoft Excel for Microsoft 365 MSO (16.0.13801.20288) 64-bit Ver. 2102
to show the examples of creating 64-bit programs that run on 64-bit Windows 10.

Instrument drivers used with Excel VBA

Excel VBA provides one of the development environments suitable for use with IVI-COM
instrument drivers. Although using COM objects, such as ActiveX controls, is a generally
adopted technique in Excel VBA programming, you can create programs using IVI-COM
instrument drivers in almost the same instructions as those when creating them using COM
objects.
The guide shows examples of how to create programs using IVI-COM instrument drivers.

Supported interfaces

IVI instrument drivers support the following two types of interfaces:
•	Specific interface

Interface specific to an individual driver. With the interfaces of this type, you can make the
most of the functions of the instruments you will use.

•	Class interface
Interface that supports an instrument class defined by the IVI specifications.
The interfaces of this type enable interchangeability; however, the use of instrument-spe-
cific functions is limited.

This guide explains how to create programs using these interfaces.

Memo
•	Information about the instrument classes to which individual instrument drivers belong

are contained in the Readme file (Readme.txt) for the driver.
To view the Readme file, click Start > Kikusui > KikusuiPwr IVI Driver 1.0.0
Documentation.

•	If the instrument driver does not belong to any instrument class, you cannot use the
class interface to create applications that use interchangeability.

KIKUSUI Electronics Corp.4

Introduction

Software you need to install before programming

Before programming, download and install the following software from the Download
Service on our website (https://www.kikusui.co.jp/download/).
•	KI-VISA Ver5.5 or later
•	PWR-01 series IVI-COM Multi-Environment Drivers Ver1.0 or later
For details, see “IVI Instrument Drivers Programming Guide ― Setup”.

If you wish to use a class interface, you also need to install the following software:
•	NI-MAX Ver20.5.0 or later
•	IVI compliance Package Ver20.0.0 or later

Preparation for Using VBA

IVI Instrument Drivers Programming Guide ― For Excel VBA 5

Preparation for Using VBA

Preparation for Using VBA

The following shows an example of creating an application for directly adding a button in an
Excel sheet. To create such an application, you need to enable macros in Excel to create a
new macro.

Enabling macros in Excel

To use VBA, enable macros in Excel.

1	 Launch Excel, and then click the File tab.

2	 Click Options at the lower left of the window.

3	 Select Customize Ribbon > Developer.

You will see the Developer tab in your Excel ribbon.

KIKUSUI Electronics Corp.6

Preparation for Using VBA

4	 Click the Developer tab in the Excel ribbon.

5	 In the Code group, click Macro Security.
The Trust Center dialog box appears.

6	 Select Macro Settings > Enable all macros.

7	 Click OK.

Preparation for Using VBA

IVI Instrument Drivers Programming Guide ― For Excel VBA 7

Preparation for Using VBA

Creating a new macro

Create a button in Excel and register a new macro.

1	 On the Developer tab, click Insert > Form Controls, and then select a
Button (in Form Controls).

2	 Click the cell in which you want to add the button.
The Record Macro dialog box appears.

3	 Enter a name for the macro, and then click Create.

The Visual Basic editor appears. The editor shows the source code for the button han-
dler. From here, you can write a program in the button handler.

KIKUSUI Electronics Corp.8

Programming using a specific interface

Programming using a specific interface
With the specific interface, you can make the most of the instrument driver-specific
functions.
The following explains how to create a program using a specific interface.

Preparation for programming

Importing a Type Library

Import a type library for the IVI-COM instrument driver you will use.

1	 Open the Visual Basic editor, and then click Tools > References.
The References dialog box appears.

2	 Select IVI KikusuiPwr 1.0 Type Library and IviDriver 1.0 Type Library.

3	 Click OK.

Memo
Specific interfaces do not support interchangeability. If you which to take advantage of
interchangeability, use a class interface (p.7).

Programming using a specific interface

IVI Instrument Drivers Programming Guide ― For Excel VBA 9

Programming using a specific interface

Building a program

Creating an object and opening/closing a session

The following is a programming code example, which contains the code for creating an
instrument driver object and opening and closing the session in addition to the button han-
dler source code you opened in “Creating a new macro” (p.7). Here, it is assumed that
the instrument (Kikusui PWR-01 series DC power supply) with IP address of 192.168.1.5 is
connected via LAN.

Sub CommandButton1_Click()

	 Dim inst As IKikusuiPwr01

	 Set inst = New KikusuiPwr01

	 inst.Initialize "TCPIP::192.168.1.5::INSTR", True, True, ""

	 inst.Close

End Sub

The above code can run as an independent program. To execute the program for validation,
see “Executing a program” (p.14).

Parameters for Initialize method

All IVI-COM instrument drivers include the Initialize method defined by the IVI specifica-
tions. The Initialize method has the following parameters:

Parameters Type Description

ResourceName String Character string of the VISA resource name determined
by the I/O interface or address to which the instrument
is connected. For example, when an instrument with an
IP address of 192.168.1.5 is connected to a LAN and
controlled by a VXI-11 interface, the parameter will be
[TCPIP::192.168.1.5::INSTR].

IdQuery Boolean If TRUE, this method issues a query command, such
as the *IDN? query, to ask the instrument model
information.

Reset Boolean If TRUE, this method issues a restore command, such
as the *RST command, to reset the instrument settings.

OptionString String Allows you to change the settings of the IVI definition.

KIKUSUI Electronics Corp.10

Programming using a specific interface

How to set OptionString

OptionString of the initialize method can specify the following IVI definitions:

IVI definition Default value

RangeCheck TRUE
Cache TRUE
Simulate FALSE
QueryInstrStatus FALSE
RecordCoercions FALSE
Interchange Check FALSE

OptionString is character string parameters. The following shows an example.

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

When formatting, be sure to note the following:
•	If the set value is not specified, the default value will be applied.
•	The set values are Boolean datatype. You can select a set value from the following:

[TRUE], [FALSE], [1], [0].
•	Function names and set values are case-insensitive. Uppercase and lowercase letters are

not distinguished.
•	When you set multiple items, use commas to separate them.
•	Depending on the instrument driver, a “DriverSetup” parameters are supported.

The “DriverSetup” parameters are used to specify an item not defined by the IVI specifi-
cations when the Initialize method is invoked. Its usage and format depend on the driver.
Therefore, when you set a “DriverSetup” parameter, specify it as an item at the end of the
”OptionString”. For details about the “DriverSetup” parameters, see the Readme file or the
online help for the driver.

Programming using a specific interface

IVI Instrument Drivers Programming Guide ― For Excel VBA 11

Programming using a specific interface

Setting channels and testing conditions

IVI instrument drivers for power supplies are designed based on the premise that the IVI
instrument drivers have multiple channels. Therefore, in many cases, properties or methods
that control instrument panel settings implement the concept of an array of objects called
Repeated Capabilities (or Collection in general computing terms for COM) in the IVI spec-
ifications. For example, instrument drivers for DC power supplies implement the Output
Collection.
The KikusuiPwr IVI-COM driver implements IKikusuiPwr01Outputs and
IKikusuiPwr01Output. A collection is a group of multiple objects. Therefore, a collection
contains more than one object. Typically, objects and their collection have the same name.
The plural object name represents a collection, while a singular object name represents an
object.
The following shows a programming code example, which includes the code for controlling
the output channel, “OutputChannel1”, of the Kikusui PWR-01 series DC supply in addition
to the code mentioned in “Building a program” (p.9).

Sub CommandButton1_Click()

	 Dim inst As IKikusuiPwr01

	 Set inst = New KikusuiPwr01

	 inst.Initialize "TCPIP::192.168.1.5::INSTR", True, True, ""

	 Dim output As IKikusuiPwr01Output
	 Set output = inst.Outputs.Item("OutputChannel1")
	 output.VoltageLevel = 20.0
	 output.CurrentLimit = 2.0
	 output.Enabled = True
	 inst.Close

End Sub

Explanation of the programming code example

In the above code, IKikusuiPwr01Outputs is obtained through the Outputs property for the
IKikusuiPwr01 interface. Also, the IKikuauiPwr01Output interface is obtained using the Item
property.
The VoltageLevel property specifies a voltage level. The CurrentLimit property specifies a
limit value for the current. The Enabled property sets the ON/OFF state of the output.
A single Output object name ("OutputChannel1" in the example code) to be referenced is
specified for the parameter to be passed to the Item property. The object name varies by
instrument driver. You can usually find the list of object names available for a specific instru-
ment driver in the driver’s Help file. Alternatively, you can check an object name by writing
the code mentioned below.

KIKUSUI Electronics Corp.12

Programming using a specific interface

Checking an object name specific to an instrument driver

If you are uncertain about the object name specific to the instrument you will use, you can
check it using Count or Name (both are read-only) in the Output collection.
The following shows a programming code example.

Dim outputs As IKikusuiPwr01Outputs

Set outputs = inst.outputs

Dim n As Integer

Dim c As Integer

c = outputs.Count

For n = 1 To c

	 Dim name As String

	 name = outputs.name(n)

	 Debug.Print name

Next

The Count property returns the number of single objects containing in the collection. The
Name property returns the name of a single object that matches the given index number.
The name returned by the Name property is the parameter to be passed to the Item prop-
erty mentioned in “Setting channels and testing conditions” (p.11).
The above example repeatedly execute the steps from index 1 to Count using the For...Next
statement. Note that the index parameter to be passed to the Name parameter is not zero-
based but 1-based.

Programming using a specific interface

IVI Instrument Drivers Programming Guide ― For Excel VBA 13

Programming using a specific interface

Handling an error

If you attempt to pass an invalid value, such as a value outside the range, to the property or
call an unsupported function, an error occurs in the instrument driver. The IVI-COM instru-
ment driver transmits an error to the client program as a COM exception each time it occurs
in the instrument driver. VBA handles COM exceptions using the On Error Goto statement.
The following shows a programming code example, which includes the code for handling an
error in addition to the one mentioned in “Setting channels and testing conditions” (p.11).

Sub CommandButton1_Click()

	 On Error GoTo DRIVER_ERR:
	 Dim inst As IKikusuiPwr01
	 Set inst = New KikusuiPwr01Lib.KikusuiPwr01

	 inst.Initialize "TCPIP::192.168.1.5::INSTR", True, True, ""

	 Dim output As IKikusuiPwr01Output

	 Set output = inst.Outputs.Item("OutputChannel1")

	 output.VoltageLevel = 20.0

	 output.CurrentLimit = 2.0

	 output.Enabled = True

	 inst.Close

	 Exit Sub
DRIVER_ERR:
	 Debug.Print Err.Description
End Sub

Explanation of the programming code example

This code handles an error using the On Error Goto statement. For example, if a name
passed to the Item property is wrong, a value specified to VoltageLevel is outside the
range, or communication with the instrument fails, a COM exception occurs in the instru-
ment driver. The above code displays a simple message in the immediate window when an
exception occurs.

KIKUSUI Electronics Corp.14

Programming using a specific interface

Executing a program

Execute the program you have created.

1	 Click the button you have added in the Excel worksheet in Visual Basic.
The VBA macro starts, and then the program ends.

When the program fails to run

A COM exception (VBA runtime error) occurs.(p.13)

Programming Using a Class Interface

IVI Instrument Drivers Programming Guide ― For Excel VBA 15

Programming Using a Class Interface

Programming Using a Class Interface
The following explains how to create a program using a class interface. With class inter-
faces, you can implement interchangeability that uses an instrument class interface by
programming using an instrument class interface defined by the IVI specifications. Using
interchangeability, you can replace the instruments without recompiling and re-linking the
application.

Preparation for programming

Creating virtual instruments

Before creating an application that uses interchangeability, you need to create a virtual
instrument.

The IVI specifications enable interchangeability by providing an IVI Configuration Store out-
side the instrument drivers and applications.
The applications control instruments through a special instrument driver called instrument
class driver instead of directly control them using instrument-specific drivers.
The application controls the instrument by selecting the instrument driver DLL according to
the data stored in the IVI Configuration Store and indirectly accessing the loaded instrument
driver through a class driver function that does not depend on the instrument.
The IVI Configuration Store stores data as an XML file (e.g. C:/ProgramData/IVI
Foundation/IVI/IviConfigurationStore.xml). Mainly IVI instrument drivers or some of
the VISA/IVI configuration tools access the IVI Configuration Store through the IVI
Configuration Server DLLs. Applications do not usually use it.

Memo
•	To use interchangeability, the IVI-COM instrument drivers must be provided for both

instruments before and after the replacement and belong to the same instrument
class. Interchangeability between different instrument classes is not supported.

•	In programming using a class interface, the available instrument-specific functions
are limited. To make the most of the functions specific to an instrument, use a specific
interface (p.8) to create programs.

Memo
To avoid losing interchangeability, the application code cannot include statements
dependent on specific IVI-COM instrument drivers (e.g. a directly created KikusuiPwr
object) or specific VISA addresses (resource names) (e.g. [TCPIP::192.168.1.5::
INSTR]).

KIKUSUI Electronics Corp.16

Programming Using a Class Interface

When using VBA, use the software NI-MAX (NIMeasurement and Automation Explorer)
provided by National Instruments to configure the IVI driver.
The following explains how to create a virtual instrument using NI-MAX.

Creating Driver Sessions

1	 Launch NI-MAX, and then check the hierarchy under the IVI Drivers in the
tree view on the left of the screen.

2	 Right-click Driver Sessions and select Create New (case-sensitive).

3	 Specify a name for Driver Sessions.
In this example, mySupply is specified.

The Driver Sessions have now been created.

Programming Using a Class Interface

IVI Instrument Drivers Programming Guide ― For Excel VBA 17

Programming Using a Class Interface

Creating a Hardware Asset

Hardware Asset allows you to specify the path to connect the instrument you will use.

1	 Select the Hardware tab.

2	 Click Add to create a new Hardware Asset.

3	 Specify a name for Hardware Asset.
In this example, mySupply is specified.

4	 In Resource Descriptor, specify the VISA address to which the instrument
is connected.
In this example, [TCPIP::192.168.1.5::inst0::INSTR] is specified.

Hardware Asset has now been created.

KIKUSUI Electronics Corp.18

Programming Using a Class Interface

Setting Software Module

Software Module allows you to specify an instrument driver module (DLL module).

1	 Select the Software tab.

2	 From the Software Module list, select the instrument driver module to be
used.

In this example, kipwr is selected.

Software Module has now been specified.

Programming Using a Class Interface

IVI Instrument Drivers Programming Guide ― For Excel VBA 19

Programming Using a Class Interface

Creating a Virtual Name

Virtual Name allows you to create a virtualized channel name for the instrument driver. This
is because the valid channel name varies by instrument driver when you use an instrument
driver to which channel name needs to be specified.

1	 Select the Virtual Names tab.

2	 Click Add to add a virtual name, and then enter Track_A in Virtual Name.
In the Physical Name list, you will see the channel the instrument will use.

3	 In the Physical Name column, select a channel name displayed on the list
or enter a valid channel name.
In this example, OutputChannel1 is selected.

Virtual Name has now been created.

Memo
In some cases, the list may not display all channel names, depending on the driv-
er's mounting conditions or the configuration of the multi-channel power supply. For
details about the available driver channel names, see the Readme file or the online
help for the driver.

KIKUSUI Electronics Corp.20

Programming Using a Class Interface

Setting a Logical Name

A Logical Name refers to the name of a virtual instrument configured in NI-MAX.

1	 Check the hierarchy under IVI Drivers in the tree view on the left side of
the screen.

2	 Right-click Logical Name, and then select Create New (case-sensitive).

3	 Specify a name for Logical Name.
In this example, mySupply is specified.

4	 In Driver Session, select mySupply.

5	 Click Save IVI Configuration on the toolbar to save the settings.

Logical Name has now been set.
Now, you have completed the creation of the virtual instrument.

Programming Using a Class Interface

IVI Instrument Drivers Programming Guide ― For Excel VBA 21

Programming Using a Class Interface

Importing a Type Library

Import a type library for the IVI-COM instrument driver you will use.

1	 Open the Visual Basic editor, and then click Tools > References.
The References dialog box appears.

2	 Select IviDCPwr 2.0 TypeLibrary, IviDriver 1.0 Type Library and
IviSessionFactory 1.1 Type Library.

3	 Click OK.

KIKUSUI Electronics Corp.22

Programming Using a Class Interface

Building a program

Creating an object and opening/closing a session

An example of a programing code for creating an instrument driver object and opening
and closing a session is shown below. To complete the programming, add the program-
ming code below in the button handler source code you opened in “Creating a new macro”
(p.7).

Sub CommandButton1_Click()

	 Dim sf As IIviSessionFactory

	 Set sf = New IviSessionFactory

	 Dim inst As IIviDCPwr

	 Set inst = sf.CreateDriver("mySupply")

	 inst.Initialize "mySupply", True, True, ""

	 inst.Close

End Sub

Explanation of the programming code example

For class interfaces, you cannot use any code that depends on a specific instrument.
Therefore, this source code does not use the name, Kikusui. This code creates an
IviSessionFactory object and obtains the reference to the IIviSessionFactory interface.
Next, it specifies the IVI logical name (virtual instrument), mySupply, created in “Setting a
Logical Name” (p.20), and then calls the CreateDriver method.
Finally, it calls the Initialize method to pass the IVI logical name, and then closes the ses-
sion. When the IVI logical name is passed, the VISA address specified in “Creating a
Hardware Asset” (p.17) is used to execute the program. At this point, communication with
the instrument begins.
The above code can run as an independent program. To execute the program for validation,
see “Executing a program” (p.27).

Programming Using a Class Interface

IVI Instrument Drivers Programming Guide ― For Excel VBA 23

Programming Using a Class Interface

Parameters for Initialize method

All IVI-COM instrument drivers include the Initialize method defined by the IVI specifica-
tions. The Initialize method has the following parameters:

Parameters Type Description

ResourceName String Character string to identify an instrument. Class inter-
faces use an IVI logical name to identify it.

IdQuery Boolean If TRUE, this method issues a query command, such
as the *IDN? query, to ask the instrument model
information.

Reset Boolean If TRUE, this method issues a restore command, such
as the *RST command, to reset the instrument settings.

OptionString String Allows you to change the settings of the IVI definition.

KIKUSUI Electronics Corp.24

Programming Using a Class Interface

How to set OptionString

OptionString allows you to set the following IVI definitions:

IVI definition Default value

RangeCheck TRUE
Cache TRUE
Simulate FALSE
QueryInstrStatus FALSE
RecordCoercions FALSE
Interchange Check FALSE

OptionString is character string parameters. The following shows an example.

QueryInstrStatus = TRUE , Cache = TRUE , DriverSetup=12345

When formatting, be sure to note the following:
•	If the set value is not specified, the default value will be applied.
•	The set values are Boolean datatype. You can select a set value from the following:

[TRUE], [FALSE], [1], [0].
•	Function names and set values are case-insensitive. Uppercase and lowercase letters are

not distinguished.
•	When you set multiple items, use commas to separate them.
•	Depending on the instrument driver, a “DriverSetup” parameters are supported.

The “DriverSetup” parameters are used to specify an item not defined by the IVI specifi-
cations when the Initialize method is invoked. Its usage and format depend on the driver.
Therefore, when you set a “DriverSetup” parameter, specify it as an item at the end of the
”OptionString”. For details about the “DriverSetup” parameters, see the Readme file or the
online help for the driver.

Programming Using a Class Interface

IVI Instrument Drivers Programming Guide ― For Excel VBA 25

Programming Using a Class Interface

Setting channels and testing conditions

IVI instrument drivers for power supplies are designed based on the premise that the IVI
instrument drivers have multiple channels. Therefore, in many cases, properties or methods
that control instrument panel settings implement the concept of an array of objects called
Repeated Capabilities (or Collection in general computing terms for COM) in the IVI spec-
ifications. For example, instrument drivers for DC power supplies implement the Output
Collection.
For class interfaces, IviDCPwrOutput is used. The following shows a programming code
example, which includes the code for controlling the instrument's output channel in addition
to the one mentioned in “Building a program” (p.22).

Sub CommandButton1_Click()

	 Dim sf As IIviSessionFactory

	 Set sf = New IviSessionFactory

	 Dim inst As IIviDCPwr

	 Set inst = sf.CreateDriver("mySupply")

	 inst.Initialize "mySupply", True, True, ""

	 Dim output As IIviDCPwrOutput
	 Set output = inst.outputs.Item("Track_A")

	 output.VoltageLevel = 20.0
	 output.CurrentLimit = 2.0
	 output.Enabled = True
	 inst.Close

End Sub

Explanation of the programming code example

The above code obtains IIviDCPwrOutputs through the Outputs property of the IviDCPwr
interface. The Item property passes the virtual name, Track_A, created in “Creating a Virtual
Name” (p.19). When the virtual name is passed, the channel name specified by Physical
Name is used to execute the program.
The VoltageLevel property specifies a voltage level. The CurrentLimit property specifies a
limit value for the current. The Enabled property sets the ON/OFF state of the output.

KIKUSUI Electronics Corp.26

Programming Using a Class Interface

Handling an error

If you attempt to pass an invalid value, such as a value outside the range, to the property or
call an unsupported function, an error occurs in the instrument driver. The IVI-COM instru-
ment driver transmits an error to the client program as a COM exception each time it occurs
in the instrument driver. VBA handles COM exceptions using the On Error Goto statement.
The following shows a programming code example, which includes the code for handling an
error in addition to the one mentioned in “Setting channels and testing conditions” (p.25).

Sub CommandButton1_Click()

	 On Error GoTo DRIVER_ERR:

	 Dim sf As IIviSessionFactory

	 Set sf = New IviSessionFactory

	 Dim inst As IIviDCPwr

	 Set inst = sf.CreateDriver("mySupply")

	 inst.Initialize "mySupply", True, True, ""

	 Dim output As IIviDCPwrOutput

	 Set output = inst.outputs.Item("Track_A")

	 output.VoltageLevel = 20.0

	 output.CurrentLimit = 2.0

	 output.Enabled = True

	 inst.Close

	 Exit Sub
DRIVER_ERR:
	 Debug.Print Err.Description

End Sub

Explanation of the programming code example

This code handles an error using the On Error Goto statement. For example, if a name
passed to the Item property is wrong, a value specified to VoltageLevel is outside the
range, or communication with the instrument fails, a COM exception occurs in the instru-
ment driver. The above code displays a simple message in the immediate window when an
exception occurs.

Programming Using a Class Interface

IVI Instrument Drivers Programming Guide ― For Excel VBA 27

Programming Using a Class Interface

Executing a program

Execute the program you have created.

1	 Click the button you have added in the Excel worksheet in Visual Basic.
The VBA macro starts, and then the program ends.

When the program fails to run

A COM exception (VBA runtime error) occurs.(p.26)

KIKUSUI Electronics Corp.28

Programming Using a Class Interface

Replacing instruments

You can continue operating the system by changing only the Driver Session (IVI
Configuration) settings for the instrument driver even after replacing the instruments. There
is no need to modify the application.
You need to change the Driver Session settings for the following three items:

Item Description

Hardware tab > Hardware Assets >
Resource Descriptor

VISA address to which the instrument is
connected.

Software tab > Software Module Instrument driver to be used.

Virtual Names tab > Physical Names Physical name to which the virtual chan-
nel name is mapped.

The application can run without being recompiled and re-linked if the settings are properly
configured for the new instrument after replacement.
In the examples in this guide, when the instrument is replaced from the Kikusui PWR-01
series DC power supply (an instrument hosted by the kipwr instrument driver) to the Agilent
N5700 Series DC power supply (an instrument hosted by the AgN57xx driver), the mySup-
ply settings needs to be changed as follows:

Item Description

Hardware tab > Hardware Assets >
Resource Descriptor

VISA address to which the Kikusui
PWR-01 series DC power supply is
connected.
=> VISA address to which the Agilent
N5700 Series DC power supply is
connected.

Software tab > Software Module “kipwr” => “AgN57xx”

Virtual Names tab > Physical Names “OutputChannel1” => “Output1”

Memo
Interchangeability using an IVI class driver does not guarantee the operation before and
after the replacement of instruments. After replacing any of the instruments, be sure to
fully verify that the system operates properly.

	Introduction
	Instrument drivers used with Excel VBA
	Supported interfaces
	Software you need to install before programming

	Preparation for Using VBA
	Enabling macros in Excel
	Creating a new macro

	Programming using a specific interface
	Preparation for programming
	Importing a Type Library

	Building a program
	Creating an object and opening/closing a session
	Setting channels and testing conditions
	Handling an error

	Executing a program

	Programming Using a Class Interface
	Preparation for programming
	Creating virtual instruments
	Importing a Type Library

	Building a program
	Creating an object and opening/closing a session
	Setting channels and testing conditions
	Handling an error

	Executing a program
	Replacing instruments

